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MEBT Optics 
 Here and below we assume: 

 fRFQ=162.5 MHz 
 n_rms=0.25 mm mrad 
 Energy – 2.1 MeV (for easier comparison to BNL proposal) 

 Final choice (2.1 – 2.5 MeV?) needs to be done 
 Four 50 cm kickers (installed in every second cell) 

 90 deg. per cell    180 deg. between kickers 
 Small beam displacement in each kicker 

 Smaller aperture  smaller voltage 
 Two kickers excite the motion and the other two damp it 

 Beam current regulation with bipolar partial kicks 
o “+U” – no chopping;   
o  “-U” – chop the bunch;  
o  “0” – 50% beam current scraped 

 If all four kickers are used in phase => UU/2 
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3 beam size;  V kick=±190 V, gap=±7.4 mm, Ibeam=5 mA (linear SC), Ltot=11.1 m 
 4 cavities (installed in every 2-nd cell) 

 RF cavities are displaced from 
centers of straights to make space 
for the beam dump 

 Cavity transverse defocusing 
strongly affects optics  
 For fRF=325 MHz, V40 kV 
 L=90 deg (per two cells) 
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 325 MHz is OK if L ≤ 1 eV s 
 _max  18 deg @ 1 eV s & Ibeam=0 
 Larger L will require 162.5 MHz cavities with 2 

times larger voltage (~82 kV) 
o For the same L the low frequency RF will have the 

same effect on transverse focusing 
 Transverse and longitudinal focusing are beam current 

dependent 
 Independent control for each triplet and cavity 

 Matching beam envelope at MEBT entrance suppresses 
the beam envelope oscillations and emittance growth 

 Space charge increases the beam size  
  required kick grows by ~20-30% for 5 mA beam 
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MEBT Optics Simulations with Space Charge  

 
5 mA 162.5 MHz, 2.5 MeV 
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Alternative proposal (John Staples, LBNL) 
 Similar to SNS chopper-

antichopper 
 Accommodates both narrow or wide 

bandwidth chopper schemes. 
 Uses 12 quadrupoles, two 325 MHz 

rebunchers (blue) 
 Three 25 cm choppers (purple) in 

tandem,each side of center, either 
NB or WB. 

 “Flat” beam in 50 cm drift space in 
center for collimator(s). 

 For wideband chopper, beam is 
offset in one direction to pass 
through, deflected in opposite direction to be stopped. 

 For narrowband chopper, beam is deflected in both directions to be stopped, and 
goes straight through undeflected. Collimators symmetric across center. 

 Overall length 7.2m, which includes matchers on each end: from RFQ and round beam 
to spoke structure on right to spoke cavity. 

 The beam in the y-plane is slightly wider to reduce the power density. 
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1 beam sizes for FNAL and LBNL proposals  
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LBNL (top):        V kick=±285 V, gap=±10 mm, Ltot=7.2 m 
FNAL (bottom): V kick=±190 V, gap=±7.4 mm, Ltot=11.1 m 

vertical lines show 1/3 of kicker aperture, lines: I.b=0, crosses: I.b=5 mA  
 (the same longitudinal density is implied) 



8 
MEBT and Chopper Section, V. Lebedev 

LBNL proposal 
 Has shorter length 
 Less quads and cavities 
 1.5 times larger distance between cavities 

 Smaller longitudinal acceptance 
 More sensitive to the beam space charge 
 Requires 12% larger integral kicker strength (looks that it 

can be better optimized?) 
 Requires  1.5 times larger single kicker strength 

 Both designs show sufficiently small emittance growth and 
particle loss 
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MEBT Kickers 
Requirements and Limitations 
 4 kickers:  

 L=50 cm (2*25 cm) , Ueff=±200 V (gap 15 mm) 
 6.1 ns between bunches  

 Bunch-to-bunch distance 13.4 cm 
 Wave velocity should match the beam velocity 
 Bandwidth ~0.3 GHz for unipolar kicks  

 Bipolar kicks  
 Allow the beam current regulation 

 Reduce voltage of power amplifier in 2 times (power 4 times) 
 “+U” - pass & “-U” - kill 

  But twice larger bandwidth ~0.5 GHz  
 Bipolar kicks major advantage 

 effective protection of kicker overheating by the beam  
 Absence of DC coupling   

 DC current is directly related to the beam loss 
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Possible Implementation for  Kickers 
 There are 3 ways to decelerate the wave 

 Coiled kicker (Spiral kickers for old “GHz scopes”) 
 Meander (CERN proposal) 
 Short plates connected by a coaxial delay lines 

Beam

        
Major effects limiting the bandwidth   
 Coupling between stripes  
 Reflections from discontinuities  
 Losses in the conductor and dielectric 
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Simple analytical model for wave propagation 
 In absence of coupling between nearby lines it can be 

considered as a transmission line  
 For a single line the dispersion is small 

and is dominated by loss in the 
conductor 

 Equations for parallel lines (coupling is on) 
1 1

0 1

1 1
0 1

n n n n

n n n n

I U U UC C
x t t t
U I I IL L
x t t t

 

 

              

             

  

sign “-“ if currents in nearby lines go in the same direction,  
  “+” – otherwise 

 C0  & L0 - capacitance & inductance per unit length  
 n – numerates lines  
 
 

C0C0 C0 C0 C0
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 For  = 1 and waves propagating in the same direction in 
multiple lines the phase velocity is equal to c or  

  0 1 0 1

1c
C C L L


   

 In the first order of 
perturbation theory  
the inductive and capacitive coupling coefficients are 
equal  

1 1

0 0

, ,C L C L
C L
C L

       
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Coefficients of Potential & Coef.of Capacity  
 Coefficients of potential Sik : i ik kS q   ,   ki ikS S  

 For small strip width (w << b, h) Sik is weakly affected by 
presence of other strips  

 Coefficients of capacity  
    1

ik ikC S   ,    ki ikC C  
 Cik decays faster than Sik due 

to screening   
 Capacitive coupling coefficient  

,

0,0
i

k k i
C

C
C

    
    accounting nearby strips only 

 1

0,1
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 Inductance coupling coefficient  

CERN meander 
=9.6, b1=3 mm, b2=7 mm 
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h w

b

Capacitance and Inductance of single stripe 
 For w  < b  ( h   ) the capacitance per unit length of a 

single stripe is  
 

        
0
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 Inductance per unit length 
 Does not depend on   
 It is inversely proportional to C0 for  = 1 

    =>        0 2
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c w
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 The wave velocity   
for uncoupled strip: 
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Coiled kicker 
1 1

0
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Looking for a solution in the form:  
 0

0

( , )
( , )

i t kxUU s t
e

II s t
   

   
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and taking into account boundary conditions   
1

1

( , ) ( , )
( , ) ( , )

n n

n n

U s t U s l t
I s t I s l t





 
    

one obtains the dispersion equation 

  21 cos 2 cos
v v vC L C L

L L L

l lk      
    

       
      

l – length of a single turn 
 – is dielectric permittivity 

Beam
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Coiled kicker (continue) 
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turn length - l=6.7cm, kC = 0.053, kL = 0.14, =3.5, h=6.5 mm, total length – 25cm 
 Coupling coefficient was set to obtain sufficiently small pulse 

distortions  
  ≤ 0.1 => large distance between turns => large kick 

attenuation  
 Reduction of one turn length would help but is limited by 

kicker width  (i.e. beam size) 
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Meander kicker 
Looking for solution in the form: 

 1 2

1 2

( , ) | |, odd
,

( , ) | |, even

n n

n n

ik x ik x
i t mn

nik x ik x
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and taking into account the boundary condition:  
1

1

( / 2, ) ( / 2, )
( / 2, ) ( / 2, )

n n

n n

U l t U l t
I l t I l t






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one obtains the dispersion equation 

  v 21 sin
v 2 v

L
C L

L L

lk
l

  


  
    

    

l – length of a stripe  
 – is dielectric permittivity 

 Same as for the coiled kicker the kicker impedance is 
frequency dependent  
 Reflections from kicker and its termination affect wave 

smearing less than dispersion 
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Meander kicker (continue) 
 Unlike for the coil kicker the dispersion correction  

is  L + C not to L - C  
 i.e. much larger effect for the same coupling 

 However shorter period (more than 4 times) helps  
 It  moves problems to higher frequencies 

 Still looks that it does not address Project X needs 

 
Pulse spectrum and propagation for the CERN kicker proposal adjusted to 

Project X needs; Ltot=25 cm, h = b = 2 mm, l = 22 mm,  = 9.6 
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Problems with CERN meander kicker  
 Dielectric is directly visible by the beam  

and can be charged by its tails 
 Uncontrolled beam displacement 

 Hardly can achieve the desired bandwidth  
 Bad kicker efficiency: ~60% (Ueff ≥ 0.6U0) 

0 10x [mm]

0

1
U(x)
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Alternative Approach for Chopper Design  
 No dielectric => No charging of the surface 
 “RF cable” connection between stripes 

 Smaller effective coupling between lines 
 Local coupling can be increased => More effective kicks !!! 

 Water or air cooling of stripes is possible 
 Expected problems 

 Reflections at the 
transitions 

 Tests of prototype 
based on the cable 
delays is going on 
 Tests of single and 7 

of 11 electrodes are 
very encouraging  

 Complete kicker test 
within next 2 weeks 
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S11 for a single electrode 
(electrode length=40 mm, 

width=18 mm, step=23 mm.)  
 
 7 lines were recently 

measured 
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Comparison of network analyzer measurements 
for 1 and 7 electrodes 
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 Reflection from the kicker with 7 

electrodes is smaller than it could be 
expected from single line 
measurement 

 S21 magnitude is damped faster 
because of damping in the cable 

 Phase is strongly affected by coupling 
between lines 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

|S
21

|

7 lines no coupling (based 
on single line measurement)

7 lines (actual) 

f [GHz]

0 1 2 3 4

50

0

50

ar
g(

S2
1)

 [d
eg

]

f [GHz]



23 
MEBT and Chopper Section, V. Lebedev 

Measurements with 7 of 11 electrodes 
 Very good results for 16 cm kicker 
 It is already clear that the 

prototype of 25 cm kicker will 
satisfy the requirements 

 Much better than CERN meander 
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1
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Simulation of signal distortion after 

16.1 cm of CERN meander  
 Next step is a design of actual 

kicker 
 Vacuum & Cooling 
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Comparison of network analyzer and 

direct scope measurements for 7 lines  
(Ltot=16.1 cm) 
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High Power Amplifier 
 0.5 kW amplifier is required to make 200 V  
 Frequency band of 20 – 500 MHz is sufficient to make good 

bipolar pulse 
 If necessary an equalizer can be designed to correct for the 

phase and amplitude distortions of power amplifier  
 It can also make partial correction to the dispersion introduced 

by kicker   
 Longer kicker (2550 cm) looks possible if an equalizer is used 
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Beam Dump  
 Beam dump - large beam power (up to 12.5 kW) 

 Allocated space for RF cavity and beam dump is 70 cm  
 It is tight!!! 

 Normally water accepts the 
power density ≤ 60 W/cm2 
 Heat removal requires large 

aria of water channels  
 For Gaussian heating profile 

with  = 2.2 mm and  
linear power density dQ/dL=800 W/cm  
the temperature drop in copper ~200 K 
(R=2.5 cm)  

1 1.89lndQ RT
dL 

 
 

O8

R25

70

35

36o

R

o
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2 /d x dt

 Temperature gradient in damp 
material introduces stresses 
and should be minimized 

 Copper looks as a good material 
due to its high thermal 
conductivity 

 However the temperature 
difference of 200 K results 
large stresses  
 T=40 K @ stress yield  
 i.e. we are factor of 5 

above stress yield 
 The stress can be relieved by deformations 

 Half of the stress is absorbed by settling material to the mean 
temperature 

 Mechanical design should minimize stresses (thin slits normal to beam 
direction) 

 No significant pulse load 
 T=30 K for 5 ms interruption  
 Heat penetration (diffusion) rate                  1 cm/s 

Length of the beam dump 30 cm 
Beam dump angle to beam  29 mrad 
Max. linear power density 0.8 kW/cm 
Water pressure drop 2 atm. 
Water pipes connection serial 
Total length of pipes 2 m 
Water flow 0.3 l/s 
Power density (water–to-Cu) 64 W/cm2 
Water T (inlet-to-outlet) 9.5 Co  
T (water–to-Cu) 27 Co 
Inlet water temperature 50 Co 
Peak temperature 290 Co 
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Beam Dump Lifetime 
 Proton (H-) beam damages the dump surface 

 Sputtering 
 amplified by oblique incidence: ~0.15 mm/year 

 Blistering 
 It will be mitigated by remelting 

 High speed vacuum pumping is required to keep vacuum in MEBT 
cavities 

 Differential pumping is required to keep good vacuum in SC 
cavities 

 Insulators in close dump vicinity have to be protected from the 
direct flux of sputtered material  
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Conclusions 
 Bunch-by-bunch chopping has been significantly alleviated with 

appropriate choice of MEBT optics  
 Bunch-by-bunch chopper with 162.5 MHz RFQ looks OK 

 Present understanding of bunch-by-bunch kickers does not support 
352 MHz RFQ  

 The kicker with plates and delay lines looks as a good solution 
 10 kW beam dump requires careful design work 

 There is no obvious show stoppers for the beam dump design 
 Beam dump spattering is not a problem but prevents using thin films 

on the dump face (radiation reduction, etc.) 
 It can pollute normal conducting and SC cavities  

 500 W amplifier with 20-500 MHz bandwidth is required to 
drive 200 V at the kicker plates 
 Present systems have parameters close to the desired ones 
 An imperfection of amplifier gain (both phase and amplitude) can be 

corrected by equalizer  
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Backup viewgraphs 
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Sputtering estimate 
 The beam energy is sufficiently high and small scattering angle 

approximation can be used 
 Using Thomas-Fermi model for calculating the energy transfer to an 

atom above Ia one obtains the cross section: 
 

 

 Sputtering probability per incoming proton -  
2

2
lat

W
a



  

rp  1.53·10-16cm,  a0  0.53·10-8 cm, mpc2 = 938 MeV, E=2.5 MeV;  
for Cu: Z = 29;  A = 65.5;  Ia = 3.3 eV; alat  2.3·10-8 cm (atom-to-atom dist.) 
    W = 5.3·10-3 for  = 29 mrad (1.7 deg) 

 There is no reliable exper. data on sputtering by 2.5 MeV prot. 
 Comparison to simulations points out ~2 times overestimate 
 for =1 deg.:  modeling by T. Sizyuk (Purdue univ.)  -  W = 4.3·10-3 

above estimate                  -  W = 8.8·10-3 
 Applicability condition: incident angle is larger than the scattering 

angle:  /I E  ( >> 1 mrad) 
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MEBT Beam Instrumentation 
 Optics measurements with differential orbits  

 BPMs & dipole correctors & cavities 
 Beam envelope measurements  
 Beam loss measurements 

 + kicker protection 
 Protection of beam dump and other collimators  

 
8+ BPMs (in each triplet; 3 coordinates) 
   |     |       |   |      |   |    |      | 
4 profile monitors (3 sizes, 45 deg. phase advance, have to be upstream collimator) 
   |      |     |       |       
2 beam current monitor + beam current measurements for all collimators 
                 |                                                                                                   | 
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Limitations on Possible Choice of Beam Instrumentation 
 BPMs (4 plates in one device) 

 have to be located inside quads to save space  
 all 3 coordinates have to be reported  

 Profile measurements 
 Desirable to be able to do measurements for both p’s and H- 
 Should take small longitudinal space (~5-7 cm) 

 Transverse profile  
o IPM  

 CW, 109 electrons/cm/s @ 10-9 Torr & 5 mA 
o Light excited by beam in residual light atoms  

 CW, 106 photons/cm/s @ 10-6 Torr & 5 mA 
o Wires  

 pulsed beam, tungsten wire, 4 s, 60 Hz, T~400 C 
 Longitudinal 

o Laser profile monitor (for H- only) 
o Wire monitor (pulsed beam) 
o Laser profile monitor based on a change of beam ionization with 

optical excitation of residual gas atoms  by laser (not tested, CW) 


