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 Main specifications for the Linac
 Basic concepts for the Linac design

– High energy section, ILC based, 1300 MHz 
– Front end up to 420 MeV
– RFQ  and MEBT

 Linac structure and base technology
– Power fan-out to multiple cavities
– SC accelerating structures above 10 MeV

 Choice of lattice parameters
 Beam dynamics
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Main Linac Specifications
 Provide 8-GeV 1.56⋅1014 protons per cycle in the MI
 Beam time structure

– Extraction kicker -0.7 msec
– Fit into MI 52.8 MHz rf structure without losses

 Repetition rate & pulse length
– Initial configuration: 2.5 Hz at 3 msec, 0.5 MW at 8 GeV
– Ultimate configuration: 10 Hz, 1 msec, 2 MW at 8 GeV
– Possible upgrades to higher power and peak current

 This results to
– Peak current for beam dynamics design is 40 mA
– Average current over the pulse is 25 mA

– Fast chopper in the MEBT (rise/fall time  ≤ 2 nsec)
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Linac conceptual design

 Use ILC cavities/cryomodules in the high-energy section
– 45 cryomodules were supposed to be available

 RF power fan-out from one klystron to multiple cavities
– TTF/ILC   

 Two-frequency Linac option is proposed to produce multi-GeV
H¯ /proton beams:
– 1300 MHz ILC cavities above ~1.25 GeV

– Develop and use reduced-β ILC cavities (β=0.81) in the energy 
range ~420 MeV-1.25 GeV

– Spoke loaded SC cavities in the Front End
 Front End: 325 MHz or 1300/3=433.3 MHz  

– Klystrons are available from TOSHIBA (J-PARC type) at 325 MHz



5Design concepts for a pulsed multi-GeV H¯ LINAC 
February 2, 2010 

Front End, 325 MHz up to 420 MeV

 Obviously can be built as a normal conducting linac
– J-PARC example
– Cost is high

 We have proposed SC option
– Cryoplant will be available anyway
– Use RF power fan-out as in the high-energy section

 Use spoke-loaded cavities, developed to operate at ~350 MHz
 Transition energy from NC to SC has to be defined

– SC is not cost effective for very low energies in pulsed linacs
 In the high-current linac:

– Transition from RFQ to Drift Tube Structure requires ramping of 
accelerating gradient, SC cavities can not be used efficiently

– RFQ provides very low accelerating gradients
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Linac Structure
Major Linac Sections

325 MHz                        1300 MHz
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Being installed in the Meson Lab

SSR-2
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Accelerating cavities ( not to scale)
NC spoke           SC single spoke            Triple-spoke cavity

βG=0.81, 7-cell, 1300 MHz ILC, 9-cell
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10 MeV section, 325 MHz

 Once RF power fan-out is available, NC CH-type cavities can be used

– Very high shunt impedance ( π-mode)
– Aperture diameter is 18 mm. Small beam diameter thanks to the solenoid 

focusing
– Total RF peak power consumption is ~348 kW for 16 cavities
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Radio Frequency Quadrupole

 Basic features:
– Produce axially-symmetric beam
– Small longitudinal emittance 
– No transverse emittance growth
– Current limit is 140 mA

– Field stabilization is by “fingers” on 
the end-plates

Average radius R0, cm 0.340 

Inter-vane voltage U0, kV 90.45 

Vane length, cm 302.428 

Peak surface field, kV/cm 330 

Output energy, MeV/u 2.498 

Transverse emittance, rms, in/out, π mm mrad  0.10/0.10 

Transverse emittance, 99.5%, in/out, π mm mrad  0.14/0.17 

Long. emittance,  rms,  keV/u deg 133 
Long. emittance, 99.5%, keV/u deg 1870 
Transmission efficiency, % 97.8 
Acceleration efficiency, % 95.9 
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Beam envelopes along the RFQ

I=0

I=45 mA

 Strong focusing: avoid large spread of  Δσ
 Acceptance of the RFQ is smaller than the acceptance of the following linac
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RFQ Beam Parameters (2.5 MeV, 43 mA)
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High intensity beam physics

 The zero-current phase advances of transverse and longitudinal oscillations 
should be kept below 90° per focusing period to avoid instabilities at high 
current.

 The wavenumbers of transverse and longitudinal particle oscillations must 
change adiabatically along the linac. This feature minimizes the potential for 
mismatches and helps to assure a current-independent lattice. 

 Avoid the n=1 parametric resonance (zero current) between the transverse 
and longitudinal motion ( σT0=nσL0/2). The strongest resonance is for n=1 and 
can occur particularly in SC linacs due to the availability of high accelerating 
gradients and relatively long focusing periods.  

 Avoid energy exchange between the transverse and longitudinal planes via 
space-charge resonances, either by providing beam equipartitioning or by 
avoiding instable areas in Hofmann’s stability charts . 

 Provide proper matching in the lattice transitions to avoid appreciable halo 
formation. In the perfect “current-independent” design, matching in the 
transitions is provided automatically if the beam emittance does not grow for 
higher currents.
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Beam physics, cont’d
 To avoid halo formation, the tune depression due to the beam space charge 

should be above 0.5. The tune depression, 

is considered a boundary between the “emittance and space-charge 
dominated” beams.

 Stability for zero current beam, defocusing factor 

should be below ~0.7.
 The length of the focusing period must be short, especially in the front end.
 Defocusing factor is less for lower frequencies for given Em

 Beam matching between the cryostats: adjust parameters of outermost 
elements (solenoid fields, rf phase)

 In the frequency transition at ~420 MeV, the longitudinal matching is provided 
by 90° “bunch rotation” , or bunch compression

 Minimize halo formation
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Examples of wavenumbers for zero current

 SNS HINS
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Apertures

 LANSCE experience
– 1 MW beam power
– aperture/rms=7
– Hands-on maintenance 

 In NC structures aperture has to be small to obtain higher shunt impedance
 Beam dynamics: beam halo development for high current beams (tune 

depressions <0.8). Source: beam mismatches, lattice transitions. Well 
collimated beam develops halo with amplitude/rms~12.

 For high power linacs: a/rms>12, especially in the high energy section >100 
<MeV

 However, for proton beams below several hundred MeV: if particle is out of 
longitudinal stability area it will be lost independently of the aperture size
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Focusing structure in the SC Linac

 In low energy section SC cavities can provide high accelerating gradients 
– CW linac: ~real estate ~5-8 MV/m
– Pulsed: ~20 MV/m (real estate ~6-10 MV/m), (SNS = 2.0 MV/m)

 Real estate gradient is higher than in NC by factor of 3-5
– To fully use available gradients, apply strong focusing

 Available options for the focusing structure
– FODO

– FDO

– SC Solenoids

R F RD

R F R D R

R S R

Beam size modulation is high
Long drift space for longitudinal dynamics
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Focusing by SC solenoids

 Solenoids decrease the length of the focusing period Sf compared to FODO. 
Accelerating gradients can be higher.

 Other advantages of solenoids compared to typical FODO

– Acceptance is large for the same phase advance  σ. 
– Less sensitive to misalignments and errors. The most critical error –

rotation about the longitudinal axis – does not exist
 Perfectly suitable for SC environment together with SRF

– Beam quality is less sensitive to inter-cryostat transitions and mismatches

– Easily re-tunable to adjust to the accelerating gradient variation from 
cavity to cavity. This is critical in low energy SC linac due to the beam 
space charge.

– Can be supplemented with dipole coils for corrective steering
 MEBT: long drift space for chopper does not cause dramatic emittance growth 

for high current beams
 Long term experience at ATLAS (ANL). 

– Now operational at TRIUMF, SARAF, new projects: IFMIF
 Not suitable for H-minus above ~100 MeV due to stripping at solenoid edge 

field
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Why SC solenoids in the HINS proton driver (or Project X) ?

 Cryogenics facility is available, major part of the linac is SC structures
 The Front End (up to 420 MeV) is based on SC cavities: 325 MHz SSR, TSR

– Long cryostats house up to ~10 SC cavities and solenoids
 Can provide short focusing periods in the low energy region, 75 cm
 Axially-symmetric beam is less sensitive to space charge effects in the MEBT 

where the long drift space is necessary to accommodate the chopper and 
following beam dump

 Using SC solenoids in the NC section from 2.5 MeV to 10 MeV
– Short section between axial-symmetric MEBT and cryostats with solenoid 

focusing
– Small beam size, aperture of the cavities is 18 mm in diameter 
– Short focusing periods from 50 cm to 75 cm

 RFQ can provide axial-symmetric beam
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Experience with SC solenoids at ATLAS and TRIUMF

 9 Tesla, <100 A, current lead is ~$600.
– Persistent switch

– High-μ shielding 
 Developed in 1976 and usually we purchase solenoids from AMI (originally for 

$5k/coil)
 After beam tuning is complete, the solenoids are switched to operate in 

persistent mode
 Cavities never quench, no impact of the stray

magnetic field on SC cavities
 We have done RF conditioning of SC cavities 

and quenched cavities while solenoids were “on”
 TRIUMF has carefully studied solenoid 

alignment procedures and measured ~ ±200 μm
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Cryomodule, SC solenoid and cavities

βOPT=0.15
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New cryomodule, under construction

 The most recent design from AMI ($26.5k): reduced stray field, no iron or 
high-μ shielding

βOPT=0.077
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Cavity parameters and focusing lattice

CH

SSR-1

SSR-2

TSR

S-ILC

ILC-1

ILC-2

Section CH  SSR-1 SSR-2 TSR S-ILC ILC-1 ILC-2
βG - 0.2 0.4 0.6 0.83

# of res. 16 18 33 42 56 63 224
# of cryost. - 2 3 7 7 9 28
Epeak (MV/m) - 30 28 30 52

Focusing SR SR SRR FRDR FR2DR2 * FR4DR3 FR8DR8

 LFocsuing, m 0.515-0.75 0.75 1.6 3.81 6.1 12.2 24.4

1

52

F , m
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Focusing in TSR

 W > 120 MeV, beam is rigid
 Longer drift spaces and focusing periods are acceptable - FODO
 Longer quads, should  be possible to align – requires cold tests
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Voltage gain per cavity
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Properties of an ion SC linac, cost-effective design
 The acceleration is provided with several types of cavities designed for fixed 

beam velocity. For the same SC cavity voltage performance there is a 
significant variation of real-estate accelerating gradient as a function of the 
beam velocity.

 The length of the focusing period for a given type of cavity is fixed.
 There is a sharp change in the focusing period length in the transitions 

between the linac sections with different types of cavities

 The cavities and focusing elements are combined into relatively long cryostats 
with an inevitable drift space between them. There are several focusing 
periods within a cryostat.

 Apply an iterative procedure for the lattice design
– Choice of parameters
– Tune for “zero” beam current
– Tune for design beam current
– Multiparticle simulations
– Iterate to improve beam quality and satisfy engineering requirements
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HINS PD lattice, mitigation of the effect of the lattice transitions 
 MEBT and NC section, short focusing periods, adiabatic change from 50 cm 

to 75 cm

 2 cryomodules of SSR-1: Minimize the inter-cryostat drift space

RFQ

 3 cryomodules of SSR-2: Provide a drift space by missing the cavity

 TSR: Provide an extra drift space inside the cryostat


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Beam Dynamics Simulations
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 The major workhorse is TRACK
 “Zero-current” tune were created 

using TRACK routines in 3D-fields

 The tuned lattice was simulated 
with ASTRA for detailed 
comparison

 Tune depression with space 
charge: 
– rms beam dimensions are 

from TRACK or ASTRA

Stability  chart for zero current,
betatron oscillations

ο - TRACK    × - ASTRA
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Variation of lattice parameters along the linac

 σ0<90°
 kT0, kL0 adiabatic despite of many lattice transitions with different types of 

focusing and inter-cryostat spaces, cavity TTF
 Beam matching in the lattice transitions is very important to avoid 

emittance growth and beam halo formation
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Hofmann’s chart for the PD Front End

 Avoid strong space charge resonances (white area)  
 Provide equipartitioning of betatron and synchrotron oscillation 

temperatures along the linac, primarily in the front end
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Beam envelopes, 45 mA RFQ entrance, 43.25 mA in the 
linac
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RMS emittance growth 

 Main contribution from
– MEBT, irregular lattice
– Inter-cryostat drift space

• Beam diagnostics
– Lattice transition

• Increase of focusing 
length

– Long focusing periods in 
the S-ILC section

– Beam matching is good 
but not perfect

 Emittance growth is low 
and acceptable for the 
HINS PD
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High statistics simulations for 8-GeV, 100 seeds with all errors
Envelopes                         RMS emittances

Misalignments: sol. -   ±0.2mm, quads - 0.15mm
Quads rotation: ±5 mrad
Cavities: ±(0.5 -1.0) mm
RF errors:1 deg and 1%, rms

 Error simulations
– Random, multiple seeds
– For the static errors 

correction is applied in 
each seed

– Dynamic errors are not 
corrected

 Type of errors
– Misalignments
– Dynamic errors of RF and 

focusing field

10-1

10-2

10-3

Beam Losses (W/m)
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Conclusion

 Pulsed H-minus/proton linac design has been developed
– All SC above 10 MeV
– SC linac can provide good beam quality for peak current ~45 mA

 With the assumption that RF power fan-out is a practical approach, the SC 
linac is cost-efficient

 RFQ provides axial-symmetric beam 

 Focusing of high-intensity beams with SC solenoids provides several 
advantages compared to quadrupole focusing

 Beam dynamics design of the linac is based on high-intensity beam physics 
approach

 High-statistics BD simulations with all machine errors and H-minus stripping 
show beam losses well below of <0.1 W/m for typical set of machine errors 




