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Project X Scope of Estimated Work #

* The primary global function of the RF Control System is to regulate the
RF fields in all accelerating cavities to maintain required beam energy
and emittance

» Global regulation requires information from beam based instrumentation and sector
vector sums created from multiple stations

— Exception handling for events such as a quenched cavity

» Cavity field regulation is performed by the local LLRF system which controls a
klystron and two cryomodules

» Cavity phase regulation is in relation to a Master Oscillator signal via the phase
Reference line

* Alocal LLRF system

» Receives program requests from global control and localized real-time beam based
feedback

» Demodulates over 60 RF signals from the cryomodules, RF, and beam pickups

» Provides Cavity Field regulation by control of the klystron drive and the Ferrite
Vector Modulators the RF drive fast and slow cavity tuners

» Provides Cavity Resonance control with motorized and piezo cavity tuners
» Provides self calibration and diagnostics
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Project X Boundary Conditions & -
Assumptions L.

* LLRF interface to other systems

— Control and Timing system

» The primary Control System interface is via Ethernet connection to the crate level
CPU. This connection scaler settings and reading, alarms and limits and waveform
capture

» LLRF provides synchronous reference clock signals to the Distributed Timing
system and receives “LIrfStartTrigger” (active high LVDS)

— HLRF and station interlocks
» LLRF provides the drive signal to the klystron drive amplifier (10dBm FS)

» LLRF receives coupled port forward and reflected power signals from Drive
amplifier and several waveguide pickups. (10dBm FS @ receiver)

» LLRF provides a “LIrfReady” signal (active high LVDS)
» Receives an “Rflnhibit_n” (active low 50 Ohm)
— Machine Protection system
» LLRF provides a “GradientRegulated” signal (undefined interface)
» LLRF provides a “RfTrip” signal (undefined interface)
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Project X Boundary Conditions & -
Assumptions L.

* LLRF interface to other systems

— Cryomodule
» LLRF receives forward, reflected, and cavity transmitted RF signals for each cavity
» LLREF drives stepping motors and piezo actuators
— RF protection system
» LLRF provides cavity RF signals
— Instrumentation and Diagnostic
» LLRF provides RF Phase Reference signals to diagnostic systems
» LLRF receives beam phase signals from beam detectors
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Project X LLRF: assumptions #

* Main Linac: LLRF equipment will reside in the Klystron Gallery

* Tight regulation of cavity parameters
— R/Q of cavities - needed for beam based calibration
— Frequency of passband modes

* Negligible ground motion over the length of the linac

* Internal hardware and software design with outsourced manufacturing
* There will be sufficient RF power headroom for regulation

* LLRF will not be a part of the personnel protection systems

* LLRF will be a secondary system in the machine protection systems

* The ILC construction LLRF Group will have control over most decisions
that affect system costs
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Project X |CD1-ICD2 Requirements #

* Many of the RF control requirements are the same for ICD1 and 2

* Microphonics have been studied and require about 20% power overhead
with the 1ma beam current

¥

ICD-1 ICD-2
Duty Factor pulsed 10 Hz, 2ms CW operation
Beam Current 25mA ImA
Cavity/PA Ratio 16:1 1:1
Regulation 1Deg., 1% 1 Deg., 1%
Control loops GDR GDR, SEL
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Project X LLRF for Two Cryomodules J%
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Project X Crate Level Diagram #
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Project X
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Project x Phase Noise of 1300 MHz C 3
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Project X 325 MHz LLRF System T
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Project X  Beam loading compensation L,

FF klystron amplitude and phase modulation

Power plot for cavity 17
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Project X RCS Parameters #

Table III-8: Main Parameters of RCS

Energy, min/max, GeV 2/8
Repetition rate, Hz 10
Circumference, m (MI/6) 553.2
Tunes, vy/vy 18.42/18.44
Transition energy, GeV 13.36
Number of particles 2.6x 10"
Beam current at injection, A 2.2
Transverse 95% normalized emittance, mm mrad 25
Space charge tune shift, inj. 0.06!
Norm. acceptance at injection, mm mrad 40
Harmonic number for main RF system, 4 98
Harmonic number for 2-nd harmonic RF system, 196
RF bucket size at injection, eV s 0.38
Injection time for | mA linac current, ms 4.3
Required correction of linac energy (kinetic) during injection 1.2%
Total beam power required from linac, kW 90°
Total beam power delivered by RCS, kW 340
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Project X RCS LLRF #

* Global Radial Position and beam PLL control loops

— Frequency and acceleration phase angle
» 50.33-52.81 MHz sweep

* RF station slave controllers for first and second harmonic stations
— 16 first, 10 second harmonic cavities

— Beam generated voltage is 150 times V_,, at extraction requires very high RF
suppression of fundamental and revolution harmonics

— Local direct RF feedback, beam based feedforward and comb filters

* Controllers and comb filters use the same FPGA based hardware as the
Linac

* Simulation work is needed
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Project X Collaborators #

* We are currently working with Alessandro Ratti and Larry Doolittle from
LBNL. This will develop with a completed MOU

* Ongoing collaboration with ILC groups from KEK and DESY
* Ongoing collaboration with Argonne

* Close ties with JLAB

* Internal collaboration at Fermilab from AD, CD, and TD
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Project X Development Plans for J&
! 2010... W

* Anticipated inputs from other efforts

— Much development work will be done within the current HINS and NML
projects. Current activities include A0, HTS, CC2, HINS, NML, ILC

— FNAL and LBNLwill collaborate on
» Resonance control algorithm development
» Calibration of the receiver chain
» Error handling
> Prepare design for CD-1 review

* Booster Ring LLRF will extrapolate off of Ml Comb filter project and off of
Linac controllers

* Presently not expecting major changes to the Main Injector LLRF system
* Modeling and simulation efforts
* Other collaboration efforts?
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Project X  Open Questions #

* What will be the “best” electronics packaging in 2015?

* Are there new technologies emerging that we should be exploring?
* Build or buy LLRF hardware and software?

* Single or multiple cavity per power amplifier?

* Ferrite Vector Modulators cost reduction?

* RCS beam loading issues

* Spoke resonators or DTLs?
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Project X Basis of Estimates #

* Review of existing systems SNS, Jlab, DESY, KEK, FNAL
* Vender quotes on BOMs with production quantities

Receiver - FNAL prototype BOM
Controller - FNAL prototype BOM
Cable - quote from vendor

Piezo controller, vector modulator controller, drive amplifier, phase reference -
best estimate

Final costs may be lower with a true bidding process
See paper documents for details

* Prototypes of major components
* Estimate of uncertainty ~ 30%

Copper, steel, management structure and requirements, high reliability
requirements, present design level
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Project X 2 GeV Linac Cost #

Cost Summary for Project X - LLRF

Cost / Station (k| Total Cost (k
# Cavities #Cryomodules # LLRF Station $) $)
325 MHz RFQ & 2 Bunchers 3 0.5 $ 7999 | $§ 40
325 MHz SSRO (beta=0.117) 16 3 1.5 $ 89.32 | § 134
325 MHz SSR1 (beta=0.22) 18 2 1 $ 90.02 | $ 90
325 MHz SSR2 (beta=0.4) 33 3 1.5 $ 90.02 | $ 135
325 MHz TSR (beta=0.6) 42 7 3.5 $ 90.02 | $ 315
1300 MHz SILC (beta=0.81) 72 12 6 $ 90.02 | $ 540
1300 MHz ILC (beta=1) 68 9 5 $ 90.02 $§ 450
LLRF Total Station Cost 252 19 $ 1,704
Cable plant $ 187.25
Master Oscillator $ 75.00
Local Oscillator&Dist. $ 63.20
Synchonizaton to ring $ 80.00
Phase Reference Line $ 215.08
Global Energy Controller $ 50.00
Machine protection $ 95.00
Test Stand 325MHz $ 89.32
Test Stand 1300MHz $ 90.02
Spares
Test Equipment
Total LLRF System Cost ($k) "$ 2,375
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Project X  Potential Technical Lt
Revisions W

e State of the art RF electronics changes rapidly and will affect circuit and
possibly system topology. A ten years extrapolation into the future is a
stretch but the sign of most cost change is generally in our favor

» Crate standards including possibly no crate

» Direct sampling of RF signals

» Radiation hardness of components — sample at the cryomodule
» Technology for fiber and copper reference distribution

» Next generation FPGAs and ADCs

» New technologies

— No big cost drivers

LLRF role in MPS is presently largely undefined
— Design decisions could add complexity and expense
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Project X LLRF activities for Project X at CD T

. Real Time Simulator (RTS)

The RTS currently supports 4 cavities.

- The current simulator models include superconducting and normal

conducting cavities, individual cavity synchronous phases and beam loading
conditions.

- Future work:

- Expand the RTS to simulate a full Project X RF unit and Project X
front end LINAC.

* Improve the user interface.

+  Off line simulations
- €D will complement AD effort in off line simulations for Project X.

- CD will feam up together with AD/LLRF to develop common models for the
existing Matlab off line LLRF simulator.
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Project X LLRF activities for Project X at CD s,

. LLRF models
Complement AD/LLRF effort in modeling the LLRF problem for Project X.
- Develop a machine parameter configuration to optimize RF fields in the cavities.
- Calibration procedures.
- Analyze and incorporate RF disturbances into the models.
- Collaborate with TD in their Lorentz force detuning modeling.

« LLRF Control

- Advance in the development of control algorithms.
- Incorporate new control algorithms in the off line and real time simulations.
- Implement the algorithms in firmware and measure results on field.

- Support Project X management
- Support costing and documentation for reviews.
- Participate of meetings and workshops.
- Publish results.
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Project X LLRF activities for Project X at CD Lt

e ESECON controller

— Hardware
» We have 10 working boards.
— 3 at AO photoinjector
— 1 for HTS at Meson lab.
— 1 for CCIl at NML.
— Firmware
» All basic modules are working.

» The firmware work will continue adding new blocks such as klystron
linearization, beam loading compensation, a more sophisticated
control, automation and calibration, etc

— Software

» We will support DOOCS operation and some level of development. It
would be nice to migrate ESECON to the main Controls software for
Project X.

— Commissioning, operations and studies

» Will be supported.
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