Collaboration Opportunities on Project X Beam Instrumentation

Manfred Wendt
Project X Collaboration Meeting
February 11, 2009

Project X Overview of Beam Monitors

ICD-1 Diagnostics	BPM	BLM	Toroid	Laser wire	SEM / Slit	Wirescanner	Screen Monitor	Fast F-Cup	Long. Fiberlaser	e-beam scanner	e-Cloud	IPM	Other Monitors
Injector	32	48	16	8	5	9		5	1	2	2	2	2
1.3 GHz Linac	51	55	3	3				3					
Transport Line	66	88	5	4	23		3						
Recycler (Inj)	1	20	3		5								5
Main Injector										2	2	2	
TOTAL	150	211	27	15	33	9	3	8	1	2	2	2	7

System Requirements

- Detailed requirements and specifications for beam instrumentation systems have NOT yet been established. Need to:
 - Requirements to be derived from beam dynamics and operations aspects (intensity ranges, resolution, precision, operating modes, etc.)
 - Define monitor technologies, e.g. button vs. cavity-style BPM in 1.3 GHz SCRF cryomodules
 - Exact location / layout / space / # of beam detector components.
 Space limitations: Optics / diagnostics balance (beam quality vs. diagn.)
- Establish a physical layout based on system installation numbers
 - Optimization / distribution of racks/crates vs. cabling, tunnel electronics(?)
 - Standardization of electronics hard- & software (e.g. VME/VXS, TCA, ...)
- Specification of the Machine Protection System (with Controls)
 - Operating modes (long/short pulse), response times, detection elements

(Technical) Issues

- Most technical issues on high-intensity beam instrumentation systems are have been addressed and resolved elsewhere, e.g. SNS, but also DESY FLASH ("cold" beam monitors). However:
 - Exact specifications and the conceptual design has to be worked out.
 - Limited real-estate in MEBT, SCRF spoke-resonator and cryo-modules.
 - Location / type of tr. profile monitors for emittance measurements.
 - Detection of tr. beam halo (vibrating wire, laser wire) and long. beam tails (mode-locked fiberlaser) to prevent beam losses.
- Need onsite development / experience with non-invasive beam diagnostics (laser wire, e-beam scanner)
 - Minimize radiation background, instrument survival.
 - Emittance / profile monitoring in the transport line!
- Infrastructure, integration, standardization, DAQ (Controls)
 - Synchronized time stamping of data, low-jitter (sub-ps) clock signals

HINS MEBT Real Estate

SNS MEBT Diagnostics:

Technical Strategy

- Collect information
 - Workshop participation (HB, BIW, DIPAC, Care) information exchange
 - Visit of potential collaborators, e.g. SNS, BNL, LBNL, SLAC
 - Meetings, meetings, ... (requirements & specifications!)
 - Review of specific instrumentation systems,
 e.g. HINS MEBT diagnostics, cryomodule BPMs, etc.
- Instrumentation RD&D targets (need beam!)
 - HINS H⁻ front-end (various linac instrumentation)
 - Main Injector (e-cloud, e-beam scanner, IPM)
 - NML test accelerator (cryomodule BPMs)
- Develop, build and test mission critical beam instruments, e.g.
 - MEBT diagnostics (orbit, emittance & phase monitors)
 - "Cold" BPMs, phase pickups (1.3 GHz cryomodule, spoke-resonators)
 - Non-invasive beam instruments

Practical Activities

Project X1st HINS Beam Measurement

e-Cloud Measurements

- Microwave transmission (phase velocity) measurement:
 - From plasma physics, microwaves travelling along a waveguide (vacuum chamber)
 - Phase shift due to a homogeneous plasma
 - Microwave dispersion relation:

$$\frac{\Delta\phi}{l} = \frac{\omega_p^2}{2c\sqrt{\omega^2 - \omega_c^2}}$$

For an electron cloud

$$\omega_p^2 = 4\pi \rho_e r_e c^2$$

is proportional to e density

Project XTime Resolved Measurements

Direct Phase e-Cloud Measurements

 Mix the transmitted signal with the source and measure the baseband component.

The phase difference translates into a DC offset at the mixer output.

- We can observe the development of the e-Cloud as the beam passes!
- Data shown represents one machine turn (TbT time resolution).

Project XBNL Laserwire Collaboration

BNL:

- 750 keV H⁻ beam
- Faraday-cup e- detector

Fermilab:

- 400 MeV H- beam
- Scintillator/PMT e detector

Project X Collaboration Opportunities:

- Laser-based, non-invasive beam diagnostics formal collaboration (MoU) with LBNL, J. Byrd.
- MEBT emittance monitor, e.g. mulitwire/slit apparatus. (UT?).
- LEBT emittance diagnostics, e.g. Allison scanner.
- Collaboration on a e-beam scanner for non-invasive beam profile monitoring of high intensity proton beams (SNS?).
- Collaboration of a high power version of a fast Faraday cup as invasive longitudinal beam profile monitor (SNS?).
- Collaboration on beam halo diagnostics, e.g. vibrating wire (Bergoz offers now a "commercial" version of this instrument).
- Need to set up a formal plan and scope (MoU) of the collaboration!

Collaborations

- The scope of a formal collaboration can be wide:
 - Time frame from 6 month to several years
 - From conceptual design study to a complete turn-key instrumentation system (however, the latter may be limited by available funds).
- The Project X R&D collaboration has to be based on a MoU, which includes:
 - Definition (exact specifications) and scope of the R&D activity.
 - Schedule & milestones.
 - Oversight, reviews and good communication, based on transparency and trust (this includes some travel and visits).
- Project X information:
 - http://projectx.fnal.gov
 - Document database (private DocDB):
 Username: collaborators, Password: xcoll